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Objective Quality Assessment of Screen Content
Images by Uncertainty Weighting
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and Zongming Guo, Member, IEEE

Abstract— In this paper, we propose a novel full-reference
objective quality assessment metric for screen content
images (SCIs) by structure features and uncertainty weighting
(SFUW). The input SCI is first divided into textual and pictorial
regions. The visual quality of textual regions is estimated based on
perceptual structural similarity, where the gradient information
is adopted as the structural feature. To predict the visual quality
of pictorial regions in SCIs, we extract the structural features
and luminance features for similarity computation between the
reference and distorted pictorial patches. To obtain the final
visual quality of SCI, we design an uncertainty weighting method
by perceptual theories to fuse the visual quality of textual and
pictorial regions effectively. Experimental results show that the
proposed SFUW can obtain better performance of visual quality
prediction for SCIs than other existing ones.

Index Terms— Visual quality assessment, screen content image,
full-reference quality assessment, uncertainty weighting.

I. INTRODUCTION

W ITH the increasing requirement of the transmission
for complicated screen interfaces among clients, there

is one type of images emerging over Internet, which is
called screen content image (SCI). Generally, the SCI is a
mixture of pictorial and computer generated textual/graphical
regions. It has been widely used in various multimedia applica-
tions, including information sharing system between computer
and smart devices [1], cloud computing systems [2], [3],
remote conference, product advertising, etc. With the pop-
ularity of smart phones, more and more users would like
to share different information with each other by rendering
various visual content as the form of SCI, where various
multimedia processing methods might be involved, such as
coding [10], [11], [12], [8], transmission [3], etc. Currently,
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there are a large number of image processing algorithms
proposed for SCI, including Just Noticeable Difference esti-
mation (JND) for SCIs [54], SCI compression [4], [6], [7],
SCI quality assessment [5], [17], [24], [52], [53], SCI seg-
mentation [9], etc.

During the procedure of SCI acquisition, processing, trans-
mission, etc., various distortions might be involved. When
SCI is created by the camera in smart phones, the noise and
blurring distortions might be generated due to the camera
motion and different environments. For the transmission of
SCI over Internet, the compression distortion might be created
due to the image coding for efficient transmission. Thus,
the visual quality assessment method, which can be used to
estimate the perceptual quality of SCI, is much desired to serve
as a benchmark for various SCI based systems.

In the past decades, there have been various image qual-
ity assessment (IQA) methods designed for visual content.
According to available reference information, visual qual-
ity assessment (VQA) metrics can be classified into three
categories: full-reference (FR), reduced-reference (RR) and
no-reference (NR) approaches [21], [22]. Among these IQA
metrics, FR metrics require the complete reference information
to predict visual quality of images; RR metrics need part of
reference information to estimate visual quality of images; NR
metrics do not require any reference information for visual
quality assessment of images. For all these three types of IQA
methods, there have been various studies designing related
metrics for IQA [21].

Most of traditional IQA metrics are FR approaches. Tra-
ditional signal fidelity methods such as Peak Signal-to-Noise
Ratio (PSNR), Mean Square Error (MSE) and Mean Absolute
Error (MAE) predict visual quality of images by simply com-
puting pixel differences between the reference and distorted
images. These signal fidelity methods are widely used for
VQA in both industry and academia due to their simple and
efficient implementation. However, they do not consider the
properties of the Human Visual System (HVS), and thus, they
might not obtain accurate quality prediction results as human
beings perceive [21], [22]. To overcome the drawbacks of these
existing metrics, many advanced perceptual IQA metrics have
been proposed for various multimedia processing applications
during the past decade [21].

Wang et al. [23] proposed the well-known FR metric
of structural similarity (SSIM) by considering the charac-
teristics of human beings’ perception on image structure.
Following this perceptual VQA metric, there are various types
of FR VQA metrics proposed in recent ten years [18], [21].
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Sheikh et al. [32] used natural scene statistics to design a
FR metric of information fidelity criterion (IFC) for images.
The visual information fidelity (VIF) is designed by consid-
ering additive noise and blur distortion in [26], where most
distortion types can be composed of these two distortions.
Chandler et al. proposed a FR metric of visual signal-to-noise
ratio (VSNR) by wavelet coefficients [35]. Larson and
Chandler [34] proposed a FR metric called most apparent
distortion (MAD) by local luminance and contrast masking,
and local statistical features of images. Zhang et al. [25]
adopted phase congruency and gradient magnitude to design
a FR metric called feature similarity (FSIM). Gradient simi-
larity (GSM) is used to measure the difference in contrast and
structure for FR IQA metric design in [28]. Wu et al. [27] built
a FR IQA model by dividing the input image into two different
regions based on internal generative mechanism. Recently,
there are many studies using machine learning techniques to
design FR IQA metrics [36], [37].

Besides the FR IQA metrics, many RR and NR IQA metrics
have been proposed in the past decade [42]. Rehman and
Wang [38] proposed a RR metric by structural similarity
in, where statistical features from a multi-scale and multi-
orientation divisive normalization transform are extracted for
distortion measure. Narwaria et al. [39] used the phase and
magnitude of discrete fourier transform (DFT) to design a RR
IQA metric. Wu et al. [13] designed a RR metric based on
visual information fidelity. Ma et al. [19] designed a metric
for multi-exposure image fusion. For NR IQA, there have been
also various studies investigating how to evaluate the image
quality without any reference information [15], [16], [41].
Ong et al. [40] designed a NR metric to measure the visual
quality of image blur by the average extent of edges in the
image. Zhai et al. [41] proposed a NR IQA metric based
on the extracted features from DCT domain. Gu et al. [14]
computed the related features to design a NR metric in the
autoregressive parameter space. Fang et al. [15] built natural
scene statistics models for NR IQA. Wu and Wang [43]
proposed an efficient NR IQA metric by statistical features
extracted from binary patterns of local image structures.
Li et al. [20] designed a NR metric for image blur quality
assessment by using discrete orthogonal moments. There are
also other NR metrics for image quality evaluation by using
machine learning technologies [30], [44].

For these IQA metrics introduced above, they are mainly
designed for VQA of natural images. The properties of natural
images are different greatly from those of SCIs. Generally,
the SCI includes repeated patterns, thin lines and sharp edges,
while natural images usually include smooth edges, thick lines
and more color information. Thus, the existing IQA metrics
designed for natural images are not effective for visual quality
evaluation of SCI. To investigate the visual quality of SCI,
Yang et al. conducted an user study to construct a subjective
database SIQAD (screen image quality assessment database)
for SCI quality assessment recently [5]. In that database, there
are 20 reference and 980 distorted screen content images cre-
ated by different distortion types of Gaussian noise, Gaussian
blur, motion blur, contrast changing, JPEG, JPEG2000 and
layer segmentation based coding [45]. According to the

analysis of subjective and objective results of different VQA
metrics in that study, there is much room to improve the perfor-
mance of SCI quality evaluation. To investigate the perceptual
SCI coding, Wang et al. designed an VQA metric by visual
field adaptation and information content weighting [17]. How-
ever, that study mainly focuses on the VQA for SCI coding.
Ni et al. [52] proposed VQA metrics for SCIs based on
edge [53] and gradient direction information. However, these
metrics do not consider the different influences of textual
region and pictorial region on the visual quality of SCIs.

In this study, we propose a FR VQA metric for SCI based
on structure features and uncertainty weighting (SFUW). We
first divide the SCI into textual and pictorial regions by the
text segmentation method. It is well known that the HVS is
sensitive to edge information, which is the basic component
of characters in textual regions. Thus, we extract the structure
feature of textual regions by gradient information for feature
representation of VQA for textual regions. For natural images,
existing studies have shown that image structure represents the
primary visual information and the HVS is highly adapted
to obtain structural information for visual perception and
understanding [46], [47]. Besides the structure information,
the HVS is also highly sensitive to luminance variation in a
natural scene, which might lead to visual distortion [48], [49].
Thus, we extract the structure and luminance features for
visual quality prediction of pictorial regions. The overall
quality of the SCI is predicted by fusing the visual quality
of pictorial and textual regions with uncertainty weighting.

There is much difference between SFUW and other existing
related methods. In SPQA [5], the quality score of the textual
region is computed by luminance and sharpness information,
while the quality score of pictorial region is predicted by
sharpness information only. The quality scores of textual
region and pictorial region are combined linearly to obtain
the overall quality of SCIs. Although the weighting values
for textual region and pictorial region are different in SPQA,
the weighting values for all textual pixels (or pictorial pixels)
are the same and thus, SPQA does not consider the visual
perception differences of local regions in SCIs. On the con-
trary, SFUW computes the quality score of textual region by
the similarity of local gradient information, while luminance
and structure information is used to calculate the quality score
of pictorial region. Compared with SPQA [5] which uses the
same weighting for all textual pixels (or pictorial pixels) to
get the quality score of textual region (or pictorial region),
we use the uncertainty weighting for the consideration of
different influences on image patches to calculate the overall
visual quality of SCIs. In SQI, Wang et al. [17] propose a
VQA metric for SCIs by incorporating viewing field adaption
and local information content weighting. However, it does not
consider the visual perception differences for textual region
and pictorial region in SCIs. It uses the same method to
calculate the quality score of textual region and pictorial region
in SCIs. In sum, the main contributions of this study include
the following aspects.

• According to the properties of textual regions, we extract
the structure feature to estimate the visual quality of
textual regions. The gradient information is used
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Fig. 1. The proposed framework.

to compute the structure feature of textual regions
in SCI.

• For pictorial regions, we extract the luminance and struc-
ture features for quality prediction of pictorial regions.
The quality map of pictorial regions is obtained by fusing
those from luminance and structure features.

• To predict the visual quality of SCI, we design a novel
uncertainty weighting fusion method to combine the
visual quality of textual and pictorial regions.

II. PROPOSED METHOD

Our previous study [5] has shown that the statistical features
of natural and textual images are different greatly. The detailed
analysis of subjective data demonstrates that human perception
on pictorial and textual regions is different from each other.
Specifically, the distortion in textual regions are perceived
differently from that of the overall SCI. Observers would be
sensitive to the luminance and contrast change in pictorial
regions, while for textual regions, they are more sensitive
to blurring distortion than other types of distortion. Thus, it
is reasonable to design different methods for visual quality
assessment of pictorial and textual regions.

In this work, we propose a new VQA metric SFUW for
SCIs. The framework of SFUW is shown in Fig. 1. First, we
divide the input SCI into textual and pictorial patches by the
text segmentation algorithm. Then the visual quality of textual
patches can be estimated by the feature differences between
textual patches from reference and distorted SCIs. Similarly,
the visual quality of pictorial patches can be predicted by the
feature differences between pictorial patches from reference
and distorted SCIs. Through the uncertainty weighting, we
predict the visual quality of the whole SCI by combining
the visual quality of textual and pictorial patches in the SCI.
We will introduce the details of SFUW in the following
subsections.

A. Text Segmentation

We first use the texture segmentation method in [29] to
segment the SCI into pictorial and textual regions. In that
method, the authors first design a local image activity mea-
sure by variation distribution of characters, which would

obtain a coarse textual layer including textual regions and a
few pictorial regions with high activity. To obtain accurate
segmentation results, the authors further propose a textual
connected component by a scale and orientation invariant
grouping algorithm to eliminate the survived pictorial regions.
The details about that segmentation algorithm can be referred
to the study [29].

B. VQA of Textual Patches

As we know, the content in textual regions of the SCI mainly
includes various characters. Since characters are composed of
various edges, we use the gradient to represent the structure
feature of textual regions in SCI. The following filters with
two directions are adopted to compute the gradient feature of
textual regions: hx = [−1/2 0 1/2] and hy = [−1/2 0 1/2]′.
With these two filters, we can compute the structure feature
of textual regions in reference and distorted SCIs as follows.

grx = hx

⊗
Tr , (1)

gry = hy

⊗
Tr , (2)

gdx = hx

⊗
Td , (3)

gdy = hy

⊗
Td , (4)

where Tr and Td represent textual patches in the reference
and distorted images, respectively;

⊗
denotes the convolu-

tion operation. (grx , gry) and (gdx, gdy) denote the gradient
features with two directions for the textual patches in the
reference and distorted images, respectively.

With the computed structure features in Eqs. (1) - (4), we
calculate the similarity between the textual patches from the
reference and distorted images as follows [23]:

St
m(grk, gdk) = 2μgrk μgdk + C1

μ2
grk

+ μ2
gdk

+ C1

2σgrk gdk + C2

σ 2
grk

+ σ 2
gdk

+ C2
(5)

where k ∈ {x, y}; St
m(grk, gdk) denotes the similarity between

gradient features grk and gdk for image patch m; μrk and μdk

are mean values of the gradient grk and gdk , respectively; σrk

and σdk denote the standard variance values of the gradient
grk and gdk, respectively; σgrk gdk is the covariance of the
gradient grk and gdk; C1 and C2 are two constant values.
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Fig. 2. The visual samples of quality maps for textual regions. The first row: three distorted SCIs degraded by gaussian noise, gaussian blur and contrast change.
The second row and third row: the corresponding quality maps of textual regions based on SSIM and SFUW. For each distorted SCI, the subjective quality
score (DMOS), SSIM and SFUW values are also listed. (a) DMOS=68.713, SSIM=0.413, SFUW=0.572. (b) DMOS=72.937, SSIM=0.604, SFUW=0.477. (c)
DMOS=37.350, SSIM=0.801, SFUW=0.872.

According to Eq. (5), we can calculate the quality maps
of the textual patch m in horizontal and vertical directions as
St

m(grx , gdx) and St
m(gry, gdy). Through calculating the mean

value of these two quality maps separately, we can obtain two
quality scores for textual patch m in horizontal and vertical
directions as St

mx and St
my , respectively. After we calculate

the similarity between gradient features with two directions
for textual patches, we estimate the visual quality score of
textual patch m as follows:

St
m = 1

2
(St

mx + St
my) (6)

where St
m represents the visual quality of textual patch m.

In Fig. 2, we provide some samples for the degradation
of textual regions. As shown in Fig. 2, In the first row,
there are three distorted SCIs degraded by gaussian noise,
gaussian blur and contrast change. The second row and third
row show their corresponding quality maps of textual regions
by SSIM and SFUW, regardless of pure black areas which
represent pictorial regions in SCIs. We also give the quality
scores of SSIM and SFUW in the caption of this figure. We
can compare the quality maps of distorted SCIs with their
subjective and objective scores denoted by DMOS, SSIM

and SFUW respectively. In the third row, compared with the
first and second quality maps, there are more white pixels in
the third quality map, which demonstrates more image pixels
with high similarity between the reference and distorted SCIs.
The lower DMOS value in the third SCI also shows better
subjective quality of this image than the first and second ones.

C. VQA of Pictorial Patches

As indicated in the previous section, we extract the struc-
ture and luminance features to predict the visual quality of
pictorial patches. Here, we extract the normalized luminance
features to compute luminance features of pictorial patches,
while structure features of pictorial patches are calculated by
LBP features. To calculate the luminance feature of pictorial
patches, the local contrast normalization is applied to pictorial
regions of SCI to mimic early visual system and remove
the redundancy information in the visual scene. We use the
normalization operation as follows.

I ′(x, y) = I (x, y) − μ(x,y)

σ(x,y) + C3
(7)
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where I ′(x, y) and I (x, y) represent the normalized and orig-
inal luminance values at location (x, y) in pictorial patches;
μ(x,y) and σ(x,y) denote the local mean and standard deviation
values of local pictorial patches; C3 is a constant parameter.
μ(x,y) and σ(x,y) can be computed as:

μ(x,y) =
R∑

r=−R

H∑

h=−H

ω(r,h) I (x + r, y + h) (8)

σ(x,y) =
√√√√

R∑

r=−R

H∑

h=−H

ω(r,h)[I (x + r, y + h)−μ(x,y)]2 (9)

where {ω(r,h)|r = −R, ..., R; h = −H, ..., H } define a unit-
volume Gaussian window.

With the local normalization operation in Eq. (7), we com-
pute the normalized luminance features of pictorial patch n in
the reference and distorted SCIs as I ′

rn and I ′
dn , respectively.

The luminance similarity between pictorial patches from the
reference and distorted SCIs can be calculated as follows.

S
l
n = 2I ′

rn I ′
dn + C4

I ′2
rn + I ′2

dn + C4
(10)

where S
l
n denotes the quality map of pictorial patch n in the

distorted SCI from luminance feature; C4 is a constant for
numerical stability. Please note that the quality map S

l
n is

computed in a pixel-wise manner.
We extract the structure feature of pictorial patches by

using the rotation invariant uniform LBP descriptor [31] on
the original SCI. The general LBP representation can be
formulated as follows.

L B PK ,R =
K−1∑

i=0

t (Ii − Ic)2i , (11)

t (Ii − Ic) =
⎧
⎨

⎩

1, (Ii − Ic) ≥ 0

0, (Ii − Ic) < 0
(12)

where K and R denote the number of neighbors and the radius
of the neighborhood; Ic is the luminance value of the center
pixel in the local patch; (I0, I1, ..., I(K−1)) represent the lumi-
nance values of K circularly symmetric neighborhood. Based
on the study [31], we can define the local rotation invariant
uniform LBP operator as:

L B P ′
K ,R =

⎧
⎨

⎩

∑K−1
i=0 t (Ii − Ic), U(L B PK ,R) ≤ 2

K + 1, Otherwi se
(13)

U(L B PK ,R) = ‖t (I(K−1) − Ic) − t (I0 − Ic)‖

+
K−1∑

i=0

‖t (Ii − Ic) − t (I(i−1) − Ic)‖ (14)

where U is computed as the number of bitwise transitions.
After extracting the LBP features by Eq. (13), we compute

the similarity from structure feature between pictorial patches
from the reference and distorted SCIs as follows.

S
s
n = 2Brn Bdn + C5

B2
rn + B2

dn + C5
(15)

where S
s
n is the quality map of pictorial patch n in the dis-

torted SCI from structure feature; Brn and Bdn , computed by
Eq. (13), are LBP features of pictorial patch n from the
reference and distorted SCIs, respectively. Also, the quality
map S

s
n is computed in a pixel-wise manner.

According to Eqs. (10) - (15), we compute the quality
maps from luminance and structure features for SCI. The final
quality map of pictorial patches can be obtained by combining
these two from luminance and structure features as follows.

S
p
n = S

l
nS

s
n (16)

where S
p
n denotes the quality map of pictorial patch n.

With the computed visual quality map of each pictorial
patch, the visual quality score of each pictorial patch is
represented by the average value of the visual quality map
as follows.

S p
n = 1

N

∑

(x,y)

S
p
n (x, y) (17)

where N is the total amount of pixels in the pictorial
patch; (x, y) is the pixel location in the pictorial patch; S p

n
denotes the visual quality score of pictorial patch n in the
distorted SCI.

In Fig. 3, we give some visual samples to demonstrate
the visual degradation of pictorial regions in SCI. The first
row of this figure includes three distorted SCIs degraded by
motion blur, gaussian blur and contrast change, while the
corresponding quality maps of pictorial regions in these three
SCIs are shown in the second row and third row calculated
by SSIM and SFUW. In the third row, from the third quality
map, we can observe that the there are more white pixels with
high similarity between the reference and distorted SCIs than
the other two. This is consistent with the subjective quality
denoted by DMOS values in these three SCIs, which show that
the DMOS value of the third SCI is lower than those of the
other two. However, in the second row, there are more white
pixels with highly similarity in the fist quality map calculated
by SSIM and less white pixels in the third quality map. That
means the predicted quality of the first distorted SCI is better
than the predicted quality of the third one by SSIM, which is
opposite to the subjective results from DMOS values.

D. Pooling Strategy by Uncertainty Weighting

According to Eqs. (6) and (17), we can compute the visual
quality scores of textual and pictorial patches in distorted
SCIs. The overall visual quality of the distorted SCI can
be predicted by combining visual quality scores of textual
and pictorial patches in the SCI. We propose to use the
uncertainty weighting to fuse the visual quality of textual and
pictorial parts to obtain the overall quality of SCIs based
on the characteristic of the HVS. Generally, the HVS is
more sensitive to high-frequency information (such as edge
information) than other smooth regions in the visual scene.
Thus, the distortion in the high-frequency regions with more
edge information is more sensitive to the HVS than that in
other smooth regions. In this study, we measure the edge
information degree of different patches in distorted SCIs by
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Fig. 3. The visual samples of quality maps for pictorial regions. The first row: the distorted SCIs degraded by motion blur, gaussian blur, and contrast
change. The second row and third row: the corresponding quality maps of pictorial regions calculated by SSIM and SFUW. For each distorted SCI, the
subjective quality score (DMOS), SSIM and SFUW values are also listed.(a) DMOS=52.956, SSIM=0.983, SFUW=0.808. (b) DMOS=72.776, SSIM=0.632,
SFUW=0.501. (c) DMOS=45.872, SSIM=0.883, SFUW=0.870.

entropy of the gradient information, which is used as the
uncertainty weighting in the proposed SFUW.

To measure the edge information degree in different patches
of any distorted SCI, we can quantify the perceptual uncer-
tainty ν of any image patch (textual or pictorial patch) by the
entropy of the gradient information as follows:

ν = −
L∑

j=0

p j ∗ log2 p j (18)

where L is the maximum pixel value in the gradient patch,
p j denotes the probability of the pixel value equal to j in the
gradient patch. It can be computed as follows:

p j = N j

N
, (19)

where N j represents the number of pixel value equal to j in the
gradient patch; N is the total number of pixels in the gradient
patch. we set N to 256 and j is in the range of 0 and L.

Based on the uncertainty weighting calculation in Eq. (18),
we can estimate the overall quality score of textual regions in

SCI as follows:

St =
∑Nt

m=1 νm ∗ St
m∑Nt

m=1 νm

, (20)

where νm denotes the perceptual uncertainty of textual patch m
which is computed by Eq. (18); St

m is the visual quality score
of textual patch m which is predicted by Eq. (6); Nt is the
number of textual patches in the distorted SCI.

Similarly, we predict the overall quality of pictorial regions
by combining these of all pictorial patches as follows:

S p =
∑Np

n=1 νn ∗ S p
n

∑Np
n=1 νn

, (21)

where νn denotes the perceptual uncertainty of pictorial patch
n which is computed as Eq. (18); S p

n is the visual quality
scores of pictorial patch n predicted by Eq. (17); Np is the
number of pictorial patches in the distorted SCI.

After computing the visual scores of textual and pictorial
regions as Eqs. (20) and (21), we predict the overall visual
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quality S of the SCI by combining them as follows:

S = ωt St + ωp S p (22)

ωt = ν̄t

ν̄t + ν̄p
(23)

ωp = ν̄p

ν̄t + ν̄p
(24)

where ν̄t and ν̄p are the averaging information measure of
textual and pictorial regions in the SCI, respectively. They are
computed as follows:

ν̄t = 1

Nt

Nt∑

m=1

νm, (25)

ν̄p = 1

Np

Np∑

n=1

νn. (26)

III. EXPERIMENTAL RESULTS

A. Evaluation Methodology

To demonstrate the advantages of SFUW, we use the
image database in [5] to conduct the comparison experiments.
As indicated previously, this database includes 20 reference
SCIs in total. For each SCI in this database, there are seven
distortion types (Gaussian Noise, Gaussian Blur, Motion Blur,
Contrast Change, JPEG, JPEG2000, and Layer Segmentation
Based Coding) with seven degradation levels and thus there are
980 distorted SCIs in total. These reference images obtained
from webpages, slides, PDF files and digital magazines are
diverse with the visual content.

The 11-category Absolute Category Rating (ACR) is used
in the subjective experiment. In total, there were 96 subjects
involved in the test and each image was rated by at least 30
subjects. The participants’ ages range from 19 to 38 years.
After the raw subjective scores were obtained, outliers were
removed to obtain the DMOS values.

Here, we adopt three commonly used methods to compute
the correlation between the subjective and objective scores:
SRCC (Spearman Rank-order Correlation Coefficient), PLCC
(Pearson Linear Correlation Coefficient), and RMSE (Root
Mean Squared Error). SRCC can be used to evaluate the
prediction monotonicity, while PLCC can be adopted to assess
the prediction accuracy. RMSE is a measure of deviation
between the objective and subjective scores. Generally, a better
visual quality assessment method has higher SRCC and PLCC
values, and lower RMSE value. Given the ith image in the
database (with N images in total), its objective and subjective
scores are oi and si . We can estimate the PLCC as follows.

P LCC =
∑N

i=1(oi − o)(si − s)√∑N
i=1(oi − o) ∗ ∑N

i=1(si − s)
, (27)

where o and s denote the mean values of oi and si , respec-
tively.

SRCC can be computed as follows.

S RCC = 1 − 6
∑N

i=1 e2
i

N(N2 − 1)
, (28)

TABLE I

EXPERIMENTAL RESULTS BY DIFFERENT WEIGHTING METHODS.
AW: AVERGAE WEIGHTING; ICW: INFORMATION CONTENT

WEIGHTING [17]; UW: UNCERTAINTY WEIGHTING

where ei is the difference between the ith image’s ranks in
subjective and objective results.

RMSE can be calculated as follows.

RM SE =
√∑N

i=1(oi − si )2

N
(29)

The estimated quality scores by different IQA metrics might
have different ranges, we use a five-parameter mapping func-
tion to nonlinearly regress the quality scores into a common
space as follows:

f (x) = β1(
1

2
− 1

1 + e(β2(x−β3))
) + β4x + β5 (30)

where (β1, ..., β5) are the parameters to be fitted.

B. Experiment 1

In this section, we conduct the comparison experiment to
demonstrate the advantages of the uncertainty weighting used
in SFUW. From the pooling strategy by uncertainty weighting
of image patches in the previous section, we can see that the
patches with more complicated gradient information would be
assigned larger weighting for textual or pictorial regions. From
the pooling strategy for quality scores of textual and pictorial
regions, we can see that the weighting would be larger with
more complicated gradient information in textual or pictorial
regions. In the experiments, we set the size of patch to 16∗16,
c1 = c3 = c4 = 6.5025, c2 = c5 = 58.5225.

A common weighting method in IQA is the average weight-
ing to obtain the overall visual quality of the image from those
of all image patches in the image. Here, we use the average
weighting method to conduct the comparison experiment to
demonstrate the effect of uncertainty weighting in SFUW.
In the average weighting, we assign the same weighting to
the pixels in each patch, regardless of the patch belonging
to textual or pictorial region. The overall quality score of the
distorted SCI will be calculated by averaging the visual scores
of all patches. Besides the average weighting, we also use
the information content weighting method proposed in [17]
in this comparison experiment. In that study, the concept of
information content is used to represent the contribution of
each image patch to the overall quality of the SCI.

We provide the experimental results of visual quality scores
calculated by average weighting (AW), information content
weighting (ICW) and the proposed uncertainty weighting in
Table I. From this table, we can see that the performance
of average weighting which sets the weighting value of each
patch to be the same is worst. The information content
weighting method in [17] can obtain better performance than
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Fig. 4. Comparison results of different weighting methods. The scatter plots of objective quality scores against subjective scores for different weighting
methods.

TABLE II

EXPERIMENTAL RESULTS (PLCC) OF SFUW AND OTHER EXISTING METHODS ON DIFFERENT DISTORTION TYPES

the average weighting method. From the PLCC, SRCC and
RMSE values, we can observe that SFUW by uncertainty
weighting can obtain the best performance among the com-
pared ones. Meanwhile, we also show the scatter plots describ-
ing the distributions of objective quality scores against the
DMOS values from these three different weighting methods in
Fig. 4. From this figure, we can observe that the points in
the first scatter plot by average weighting are more dispersive
than the second scatter plot by information content weighting,
which demonstrates that the information content weighting
method can distinguish the visual distortion with different
degrees better than the average weighting method. From the
last scatter plot, we can observe that the points by the proposed
uncertainty weighting is more centralized than the other two,
showing that the objective quality scores obtained by SFUW
are more consistent with the subjective scores.

C. Experiment 2

In this experiment, we perform the comparison experiments
by using SFUW and the following existing visual quality met-
rics: PSNR, SSIM [23], IWSSIM [51], MSSIM [50], VIF [26],
IFC [32], MAD [34], GMSD [33], SPQA [5], SQI [17],
EMSQA [53] and GSS [52]. We compute the correlations
in terms of PLCC, SRCC and RMSE values between the
subjective scores and the predicted objective scores from the
used compared metrics. The experimental results are shown in
Tables II, III, and IV.

From Tables II, III, and IV, we can observe that GMSD
can obtain better performance than PSNR, SSIM, IFC and
MAD in visual quality prediction of SCIs. Obviously, SPQA,

SQI, EMSQA and GSS can obtain much better performance
than other existing ones. These four metrics are designed
specifically for the SCI. Among all the compared metrics,
SFUW can obtain the best performance on visual quality
prediction of SCIs, which can be demonstrated by the highest
PLCC and SRCC values in Tables II and III, and the lowest
RMSE value in Table IV.

It is well known that the advanced perceptual metrics such
as SSIM, MAD and IFC can obtain promising performance of
natural images. However, the performance of these metrics on
SCI is not good enough, as demonstrated by the experimental
results in Tables II, III, and IV. These experimental results
demonstrate that these well-known metrics cannot work well
for textual regions in SCI, and thus, we have to design
effective metrics for VQA of SCI. As mentioned in [5], MSCN
coefficient can be represented by naturalness of image pixels.
The distributions of nature images and screen content images
are different greatly. As demonstrated by [5], the coefficients
of nature images follow a Gaussian distribution, while a sharp
pimpling appears in the distribution of screen content images.
Thus, MSCN can not obtain good performance in VQA of
SCI. In SFUW, we extract the different features of textual
and pictorial regions separately for VQA of these two types
of regions. The final quality score of the distorted SCI is
estimated by fusing those of textual and pictorial regions with
uncertainty weighting. Both the perceptual features extracted
for textual and pictorial regions specifically and the uncertainty
weighting can contribute much to the promising performance
of SCI quality estimation in SFUW.

We also provide the scatter plots of the distributions of
predicted quality scores against the subjective scores (DMOS)
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TABLE III

EXPERIMENTAL RESULTS (SRCC) OF SFUW AND OTHER EXISTING METHODS ON DIFFERENT DISTORTION TYPES

TABLE IV

EXPERIMENTAL RESULTS (RMSE) OF SFUW AND OTHER EXISTING METHODS ON DIFFERENT DISTORTION TYPES

in Fig. 5. From this figure, we can observe that the points
from PSNR, SSIM, IWSSIM, IFC, and MAD are dispersive,
which demonstrate that the predicted objective scores from
these metrics is not much consistent with the subjective scores.
Compared with these metrics, the points from VIF, GMSD and
SQI are more centralized, which demonstrate that the predicted
objective scores by these three metrics are more consistent
with the subjective scores than other existing ones. From these
scatter plots, the points from SFUW are the most centralized,
which shows that SFUW can predict the best visual quality of
SCI among the compared metrics. This is consistent with the
experimental results in Tables II, III, and IV.

D. Performance Analysis

Compared with state-of-the-art VQA metrics designed for
nature image such as SSIM, IWSSIM and GMSD, the VQA
metrics including SPQA, SQI and SFUW which are designed
specifically for VQA of SCIs can obtain better performance
in quality prediction for SCIs. The main reason is that these
VQA methods designed specifically for SCIs consider the
differences between visual perception of textual and pictorial
regions in SCIs. For example, the HVS would be more
sensitive to the distortion of motion blur in textual region than
that in pictorial region. Also, the HVS is more sensitive to the
distortion of contrast variation in pictorial region than that in
textual region. Thus, SSIM (or IWSSIM, GMSD, etc.) which
predicts the visual quality of both textual an pictorial regions
in the same method and combines them with mean weighting
strategy cannot obtain good performance for VQA of SCIs.
Different from these metrics, SQI incorporates viewing field
adaption and local information content, and thus, it can obtain

better performance than these metrics designed for natural
images. In existing VQA metrics (such as SQI, EMSQA and
GSS) designed specifically for SCIs, the calculation methods
for textual region and pictorial region are the same. On the
contract, SFUW proposes to use different methods for visual
quality prediction for textual and pictorial regions based on the
characteristic of the HVS. We extract the gradient feature as
the structure feature for visual quality prediction of textual
regions, since the HVS is much sensitive to the structure
information in textual regions. The luminance and structure
features are used for visual quality estimation of pictorial
regions, since the HVS is highly adapted to obtain structural
information for visual perception and understanding [46], [47],
and it is also highly sensitive to luminance variation in natural
scenes [48], [49]. In SFUW, we use a novel weighting strategy
by uncertainty weighting to combine the quality scores of
image patches in SCIs. The uncertainty is estimated by the
energy of gradient information in image patches, since the
HVS is more sensitive to high-frequency information than
other smooth regions in visual scenes.

From the experimental results, PSNR can get the best
performance among all the compared methods for Gaussian
Noise. The reason is that PSNR is a pixel pair comparison
method and it can detect each distorted pixel in SCIs. However,
the overall performance of PSNR is inferior to other methods,
for it does not consider the characteristics of the HVS [21].
Meanwhile, the performance of SFUW on some specific dis-
tortion types (GB, MB and CC) is almost the best among the
compared methods. This demonstrates that the used features
in SFUW can effectively detect these distortion types in SCIs.
SFUW might be worse than some existing methods for several
specific distortion types such as LSC, since the used features
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Fig. 5. The scatter plots of predicted quality scores by some metrics against the DMOS values on the SIQAD. The vertical axis in each figure is the DMOS
values. From left to right, Row 1: VIF, SSIM and PSNR; Row 2: MSSIM, MAD and IWSSIM; Row 3: IFC, GMSD and SFUW.

in SFUW might not be suitable for all distortion types due to
the characteristics of different visual distortion types. We will
investigate into this problem further in the future to design
more effective VQA metric for SCIs with different distortion
types.

IV. CONCLUSION

In this study, we have proposed a new FR VQA metric
for SCI based on uncertainty weighting. For textual regions
of SCI, we extract the structure features by using the gradient
information for visual quality prediction of textual regions. For
pictorial regions of SCI, the luminance and structure features
are computed by intensity and LBP information for visual
quality prediction. The final visual quality of SCI is estimated
by fusing these of textual and pictorial regions with uncertainty
weighting. Experimental results demonstrate that the proposed
SFUW can obtain superior performance against start-of-the-art
approaches.
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